

 1

Course Title: Data Structures and Algorithms Program: BICTE

Course No. : ICT. Ed. 435 Nature of course: Theoretical + Practical

Level: Bachelor Credit Hour: 3 hours (2T+1P)

Semester: Third Teaching Hour: 64 hours (32+32)

1. Course Description

The purpose of this course is to provide the students with solid foundations in the

basic concepts of data structures and algorithms. The main objective of the course is

to teach the students how to select and design data structures and algorithms that are

appropriate for problems that they might occur. This course is also about showing the

correctness of algorithms and studying their computational complexities. This course

offers the students a mixture of theoretical knowledge and practical

experience. Programming language C will be used for practical work.

2. General Objectives

The general objectives of this course are as follows:

• To introduce data abstraction and data representation in memory

• To describe, design and use elementary data structures such as stack, queue, linked

list, tree and graph

• To decompose complex programming problems into manageable sub-problems

• To introduce algorithms and their complexity

3. Specific Objectives and Contents

Specific Objectives Contents LH

• Define Data structure and

ADT

• Define algorithms and its

types and asymptotic

notations

Unit 1: Introduction to Data Structures & Algorithms

1.1 Data type and Abstract data types

1.2 Data structures : linear and non-linear, static and

dynamic

1.3 Algorithms

1.3.1 Greedy algorithm

1.3.2 Divide and Conquer

1.3.3 Backtracking

1.3.4 Randomized algorithms

1.4 Analysis of Algorithms

1.4.1 Big O notation and its rule

5

• Demonstrate relationship

between array and pointer

• Implement structure

pointers and self-referential

pointer

• Allocate memory

dynamically using malloc,

calloc, realloc and free

functions

Unit 2: Arrays, Pointers and Structures

2.1 Array and Pointer

2.2 Structure and Pointer

2.2.1 Structure pointer

2.2.2 Self-referential pointer

2.3 Dynamic Memory Allocation: malloc, calloc, realloc, free

Practical Works

2.1 Write program to illustrate memory allocation

dynamically.

6

 2

• Define linked list its type

and applications

• Implement different types of

linked list with its

operations

• Make comparison between

array list and linked list

Unit 3: Linked Lists

3.1 Single Linked list: traversing, searching, inserting and

deleting in single linked list

3.2 Doubly Linked List: traversing, inserting, creating and

deleting in doubly linked list

3.3 Circular Linked List: traversing, inserting, creating and

deleting in circular linked list

3.4 Comparison of Array list and Linked list

Practical Works

3.1 Write a program to implement singly, doubly and circular

linked list operations

8

• Define and implement stack

and stack operations

• Convert expressions in to

different forms: infix, prefix

and postfix

• Describe the applications of

the stack

Unit 4: Stack

4.1 Introduction

4.2 Array Implementation of Stack

4.3 Linked List Implementation of Stack

4.4 Applications of Stack

4.4.1 Conversion from infix to postfix expression

4.4.2 Evaluation of postfix expressions

Practical Works

4.1 Write program to create stack with array and linked list

implementation

4.2 Write program to illustrate expression conversion and

expression evaluation

6

• Define queue and its

operations

• Implement different types of

queue

Unit 5: Queue

5.1 Introduction

5.2 Array Implementation of Queue

5.3 Linked List Implementation of Queue

5.4 Circular Queue

5.5 Priority Queue.

Practical Works

5.1 Write a program to implement linear, circular and priority

queue with array and linked list

6

• Define recursion.

• Differentiate between

recursion and iteration

• Implement recursion to

solve TOH and Fibonacci

series

Unit 6: Recursion

6.1 Introduction

6.2 Examples of Recursion: factorial, fibonacci sequence,

Tower of Hanoi(TOH)

6.3 Applications and Efficiency of recursion

Practical Works

6.1 Write a program to solve the problem of TOH

6.2 Write a program to print Fibonacci series

6.3 Write a program to calculate factorial

4

• Define tree and tree

operations

• Create and manipulate

Unit 7: Trees

7.1 Introduction

7.2 Binary Tree : Construction, Traversal (pre-order, in-order,

8

 3

Binary tree, BST, AVL tree post-order)

7.3 Binary Search Tree: Construction, Traversal

7.4 AVL tree: Construction, Traversal

7.5 Heap: Building a heap

Practical Works

7.1 Write program to implement binary tree.

7.2 Write program to implement binary search tree

7.3 Write program to implement AVL tree

• Define sorting and its type

• Demonstrate hashing

• Illustrate and implement

bubble, selection, insertion,

merge, quick and heap sort.

• Implement searching

algorithms

• Identify and compare the

efficiency of mentioned

sorting algorithms

Unit 8: Searching, Sorting and Hashing

8.1 Introduction

8.2 Sequential and Binary Search

8.3 Hashing: Hash function (truncation, division method,

folding, midsquare)

8.4 Hash collision and resolution techniques

8.5 Sorting Algorithms: Bubble, Selection, Insertion, Merge,

Quick and Heap Sort

8.6 Efficiency of Sorting Algorithms

Practical Works

8.1 Write program to implement:

 a) Bubble sort b) Selection sort c) Insertion sort

d) Quick sort e) Merge sort f) Heap sort

 8.2 Write program to implement searching algorithms: binary

search and linear search

 8.3 Write program to implement hash function.

15

• Define graph and graph

terminologies

• Explain and implement

graph traversal algorithms

• Find the shortest path using

Dijkstra's Algorithm

• Define MST and implement

kruskal's

Unit 9: Graphs

9.1 Graph Terminology

9.2 Directed and undirected graph

9.3 Graph Traversal: BFS and DFS

9.4 Minimum Spanning Trees: Kruskal Algorithm

9.5 Shortest Path Algorithms: Dijkstra’s Algorithm

Practical Works

9.1 Write a program to implement graph traversal algorithms

: BFS and DFS

9.2 Write program to implement Kruskal algorithm and

Dijkstra’s algorithm

6

4. Instructional Techniques

The instructional techniques for this course are divided into two groups. First group

consists of general instructional techniques applicable to most of the units. The second

group consists of specific instructional techniques applicable to particular units.

4.1 General Techniques

Reading materials will be provided to students in each unit. Lecture, Discussion, use of

multi-media projector, brain storming, and problem solving methods are used in all

units.

 4

4.2 Specific Instructional Techniques

Demonstration is an essential instructional technique for all units in this course during

teaching learning process. Specifically, demonstration with practical works will be

specific instructional technique in this course. The details of suggested instructional

techniques are presented below:

Units Activities

Unit 1: Introduction

to Data Structures &

Algorithms

• Define and Describe the different types of data structures

• State different operations occurring in data structures

• Write a program to implement dynamic memory

management functions

• Explain asymptotic notations and complexity on time and

space of algorithm

• Monitor of students' work by reaching each student and

providing feedback for improvement

• Presentation by students followed by peers' comments and

teacher's feedback

Unit 3: List • Demonstrate operations of linked list with algorithms

• Lab work in pairs to implement linked list operations

• Monitor students' work by reaching each student and

providing feedback for improvement

• Presentation by students followed by peers' comments and

teacher's feedback

Unit 2, 4: Array,

Pointer and Structure,

Stacks

• Illustrate array, pointer and structure of C language

• Illustrate the algorithms of stack operations

• Lab works in pair to implement stack operations

• Convert expression in other from one form to another

making group and individually

• Monitoring of students' work by reaching each pair and

providing feedback for improvement

• Presentation by students followed by peers' comments and

teacher's feedback

Unit 5: Queues • Demonstrate queue and queue operations with algorithms

• Lab work in pairs to implement queue operations

• Group discussion in advantages and limitations of queues

• Monitoring of students' work by reaching each student and

providing feedback for improvement

• Presentation by students followed by peers' comments and

teacher's feedback

Unit 6, 7: Recursion,

Trees
• Apply recursive function to calculate factorial, solve TOH

problem and generate Fibonacci series

• Demonstrate operations and types of tree

• Lab work in pairs to implement BST

• Trace a working principle of AVL

• Assign students to create AVL

 5

• Monitor students' work by reaching each student and

providing feedback for improvement

• Presentation by students followed by peers' comments and

teacher's feedback

Unit 8: Searching,

Sorting and Hashing
• Demonstrate the working principle of different searching

algorithms

• Lab work in pair to implement searching algorithms

• Implement Hashing

• Trace the working principle of different sorting algorithms

• Lab work in pair to implement sorting algorithms

• Analyze efficiency of sorting algorithms

• Monitor students' work by reaching each student and

providing feedback for improvement

• Presentation by students followed by peers' comments and

teacher's feedback

Unit 9: Graphs • Explain the graph and graph terminology

• Solve the practical problems of shortest path and spanning

tree using different algorithms

• Assign student to solve graph problems

• Lab work in pair to implement graph traversing algorithms

• Monitor students' work by reaching each student and

providing feedback for improvement

• Presentation by students followed by peers' comments and

teacher's feedback

5. Evaluation

Evaluation of students' performance is divided into parts: Internal assessment

(theory and practical and internal external examinations (theory and practical).

The distribution of points is given below:

Internal

Assessment

Theory

Internal

Assessment

Practical

Semester

Examination

(Theoretical

exam)

 External

Practical

Exam/Viva

Total Points

25 Points 15 Points 40 Points 20 Points 100 Points

Note: Students must pass separately in internal assessment, external practical

exam and semester examination.

5.1 Internal Assessment (25 Points) of Theoretical Part

Internal assessment will be conducted by subject teacher based on following

criteria:

Attendance and learning Activities 5 points

First assignment (Written assignment) 5 points

Second assignment (Project work with presentation) 10 points

Third assignment/written examination 5 point

 6

 Total 25 points

5.2 Internal Assessment (15 Points) of practical part

Internal practical assessment will be conducted by subject teacher based on

following criteria:

Attendance and learning Activities 5 points

 Practical work/project work/lab work 10 points

 Total 15 points

5.3 Semester Final Examination (40 Points) theoretical part

Examination Division, Dean office will conduct final examination at the end of

semester.

Objective question (Multiple choice questions 10 x 1 point) 10 Points

Subjective questions (6 questions x 5 marks with

‘OR” two questions) 30 Points

Total 40 points

5.4 Practical Exam/Viva (20 Points)

Examination Division, Office of the Dean will appoint an external examiner

(ICT teachers working another campus) for conducting practical examination

Items Points

Evaluation of Record Book 4

Project work/practical work presentation/skill test 10

Viva 6

Total 20

.

Recommended Books and References

Recommended Books

1 Srivastava, S.K. & Srivastava, D. (2011). Data structure Through C in Depth, (2nd

Ed.), BPB Publication

2 Langsam, Y., Augenstein, M.J. & Tenenbaum, A.M., Data Structures using C,

Prentice Hall India.

